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Abstract

General Constructive Theory of Parametric

*
and Robust Data Smoothers

P. Papantoni-Kazakos
The University of Connecticut
Dept. of Electrical Engineering
and Computer Science
Storrs, Connecticut 06268

> In relstively receat years, several algorithms for smoothing of time series

have been proposed by statisticians. Some of the simpler such algorithms have
been also applied in several engineering applications such as Image Processing.

The smoothing problem and the implied objective have not been formalized
and stated, however. This fact presents a serious handicap when different
smoothing algorithms are to be compared in terms of their performance.

In this paper we take a fresh and daring approach to the whole smoothing
problem. We formalize the problem as the extraction of a low entropy process
from a high entropy process, and as a result we present a constructive theory

of parametric and robust data smoothers.

We claim that parametric data smoothers are analog-to-digital converters,
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1. Introduction

Whenever a new experiment is set, there is no a priori information as to
the statistical nature of the outcome. It is desirable, therefore, to attempt
conclusive evaluation of the statistical behavior of the experiment outcomes,
through repetitive observations from the sawme experimental setting. The task
is particularly challenging due to the noisy nature of the observations.

In satellite communications, the transmitted useful data are corrupted by
atmospheric noise. The task of the receiver is to extract the unknown useful
data from their noisy versinn. The encoded transmission of images through
satellite, fall into this category.

The above, are oanly two of many indicative applications, which initiated the
consideration of data smoothers. The general objective of the data smoothers is
the extraction of an unknown data process (or time-series as called in the
statistical literature) from its noisy version.

Unfortunately, no qualitative definition of the data smoothers exists. The
objective of the data smoothers has been only implicitly determined in terms as
general as: "Extraction of a smooth data process from a nonsmooth noisy data
sequence".

Using the above vague definition of the objective of the data smoothers,
Tukey [1] proposed several ad hoc smoothing algorithms. Due to the lack of a
qualitative theory, Tukey's algorithms can not be evaluated coherently. Recog-
nizing this problem, Mallows [3,4] presented a first formalization of some theory
of nonlinear smoothers. Mallow's approach consists of guaranteeing some desirable
properties, it is limited to memoryless data, and it still lacks general qualita-

tive formalization. Martin [5] assumed certain known structure of the data
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process and presented accordingly a class of conditional - mean type robust data
smoothers. On the other hand, recognizing the need for data smoothers on
unknown data processes, Huber [2] took a statistics-free approach and formalized
robust smoothers within the framework of data splines.

Our view is that the approaches in [2-5] are enlightening but also intriguing.
A qualitative formalization of the smoothing problem is still lacking, and this
fact makes the evaluation of different proposed data smoothers virtually impossible.
Furthermore, we are in agreement with Huber's general philosophy. Specifically,
we think that in the smoothing problem it is not realistic to assume certain
given structure of the data process. The very objective of the data smoothers
is the extraction of the data sequence and the possibly consequent evaluation of
its underline statistical behavior.

We believe that the key to a general qualitative theory of data smoothers
is the qualitative characterization of the term "smooth". Indeed, the term
implies certain general knowledge about the process which generates the data
sequence to be extracted. In fact, we believe that the term implies possibly
relative knowledge about the data process, in comparison to the noise process by
which the data process is corrupted.

From now on, we will use the following terminology: We will call informa-

tion carrying process, the stochastic process which generates the data sequence

we wish to extract. We will call noise process, the stochastic process which

corrupts the data from the information carrying process. We call observation
process the stochastic process induced by the conjuction of the information
carrying and the noise processes.

Starting the introduction of our theory, it is necessary to refer to the

implicit assumption under the operation of the data smoothers. The assumption
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is that the information carrying process allows for data sequences with only
low level variations in time, and that any high level such variations are due
to the noise process. This assumption is hidden behind the term ‘'smooth”
assigned to the information carrying process. But in more qualitative terms,
this implicit assumption equivalently means that the uncertainty about the
information carrying process is low, as compared to the uncertainty about the
noise process. Using the term entropy for uncertainty and the fact that the
process induced by a low entropy process in conjuction with a high entropy pro-
cess is a high entropy process (the observation process in this case), we can
formalize the objective of the data smoothers in the following way:

Extract some data sequence generated by a low entropy process, from

a data sequence generated by 2 high entropy process.

The above formalization regarding the objective of the data smocthers is
still vague, but it sheds light as to the proper direction towards a qualitative
general theory. Taking one further step towards the develcpment of such a theory,
we first consider parametric data smoothers and then we expand to incorporate
consideration of robust data smoothers.

We consider the problem of parametric data smoothers arising when the noise

process is well-defined, or more specifically, when every process induced by
any given data sequence from the information carrying process and the noise
process, is well-defined.

We consider the problem of robust data smoothers arising, when every pro-

cess induced by any given data sequence from the information carrying process
and the noise process, is statistically contaminated.
Tn both the problems of parametric data smoothers and robust data smoothers,

we assume that the information carrying process is a low entropy process as
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compared to the noise process. To quantify this, we may assume an upper bound
on this entropy, in which case we may proceed with the following definitions:
Definition 1 :

A stochastic process is smooth with degree of smoothness B if its entropy

is bounded from above by 8.

Definition 2

A stochastic process is oversmooth if its entropy is zero.

An oversmooth process corresponds to a constant, thus definition 2 is
consistent with Huber's oversmoothing [2].
Also, the assumption of smoothness of some degree is implicit behind all

the v ‘osed smoothing operations [1].

In this paper, we will consider stationary and ergodic information carrying
and noise processes. We will not restrict our analysis to memoryless processes,
however.

2. Preliminaries

Let [¢,A,X] be some stationary and ergodic process, where U is the proba-
bility measure of the process, A is the process alphabet, and X its name. Denote
by x a discrete-time, infinite sequence of process elements, and by x" an

n-dimensional sector of x. Denote also by Xg; j > i the sequence Xi, Xi+1, ceey Xj

of j-i+l consequtive elements from the process.

Let [v,B,Y] be another staticaary and ergodic process, where v,B,Y,y,yn,
Yi; j > i as above.

Let vx be the measure induced by an infinite sequence x from the process

{u,A,X] and the process [Vv,B,Y], and let C, W be the induced alphabet and name
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respectively. We will assume that the superposition relationship bet:ecen the
(v,A,X] and [V,B,Y] processes is well-known, and that therefore if x known and
[v,B,Y] well-known then the process [vx,c,w] is well-known. The process
[vx,C,W] can be looked upon as a transmission channel for the process [U,A,X],
and the superposition relationship between the processes [i,A,X) and [v,B,Y] can
be, for example, additive.

Let us denote by w, wn, Wi 3 J > 1 sequences from the process [vx,c,w], as
for the process [u,A,X].

Let us denote by {32} a sequence of sliding block functions on data
sequences from the process [vx,C,W], where the sequence is determined by varying
the length £ of the sliding block window.

Each sliding block function Sl(') produces a discrete-time sequence z with

elements Zj 3 J= ...y -1, 0, 1,..., through the following operation:

- it .
zj = s, (wj_“m_l) s mbl < £ (63)

The function sﬂ(-) in (1) is time~invariant, it operates on f-length blocks
of elements from the process [vx,c,W], and it can be either a deterministic or
a stochastic function. If vx szl is the measure induced by Vx and SZ(') for
different w sequences,if D is the induced alphabet, and if [vx,C,W] is stationary
and ergodic, then so is the process [vx szl, D,Z] [see reference 7]. We will
denote by sz 2 the measure induced by the sequence w£ and the sliding block
function in ZY). This last measure is nontrivial if the sliding block function
sz(-) is stochastic.

Given the two stationary and ergodic processes [M,A,X] and [V,B,Y], we i

will consider superposition relationships between them such that they result




in a process [uv,E,V] which is also stationary and ergodic. Such a superposi-
tion relationship is the additive. Then, the class of processes [vx,C,W]
generated by different x sequences from the process [uU,A,X], are all stationary
and ergodic also. 1In this case, conclusions about the measure Vx can be drawn
from time-domain averages on the sequcnce w. Also, if the process [Vv,B,Y] is
an infinite alphabet (analog), high entropy process, and the process [u,A,X] is
a low entropy process, the process [uWV,E,V] and the class of processes [vx,C,W]
will all be infinite alphabet and high entropy processes.

If we wish to reduce the entropy of the process [vx,c,w] to values below a
finite value 3, quantization is necessary.

In the following sections, we will use the construction of empirical measures
from data sequences, as in [6,7]. Specifically, given a finite discrete-time
sequer.ce w' from the stationary and ergodic process [vx,c,w], we form a string

n . . s
W= (euay, wn, w , —--) by repeating the sequence we. If u o 18 the empirical

w
measure formed by assigning probability n_1 on each string Tw ; i = 0, 1, .., n-1,

where T indicates one step shift in time, then:

v (B =Zn_l s FeA (2)

w i
1:T1w€F
<0

; where A the generalization of the g-algebra A of sets on the space C on which
each datum W, assumes values. The empirical measure | n has restrictions uk

i . w W
which assign measure n = to each k-tuple of k adjacent symbols within w'. The
process in (2) is then periodic, stationary, ergodic, and the empirical measures
ukn are trustworthy for k < n. Furthermore, if Hk indicates the k-dimensional

w
Prohorov distance as in {6,7], then the ergodic theorem implies that for fixed k:

Lim Hk (ukn . vk) =0, a.e. in measure Vv 3
o u X X

k . . ,
; where Vv the k-dimensional restriction of the measure vx.
X
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3. Parametric Data Smoothers

a. Model Introduction

Let [u,A,X] be the stationary and ergodic information carrying process.

This process is unknown, the only knowledge available being that it is a smooth
process with degree of smoothness B (as in definition 1).

Let [Vv,B,Y] be the stationary and ergodic noise process. This process is
well-known, it is in general an infinite alphabet (analog) process, and its
entropy is much larger than the bound B.

To avoid unnecessary complications in our analysis, we will assume [as in
1-5]) that the superposition relationship between the processes [U,A,X] and
[v,B,Y]} is additive. Then, the observation process [UV,E,V] induced by the above
information carrying and ncise processes, is also stationary and ergodic. Further-
more, the process [UV,E,V] is an infinite alphabet (analog), high entropy process.

We will state the objective of the parametric smoothers formally, through a
proposition.

Proposition 1

The objective of the parametric smoothers, is to extract the smooth with
degree of smoothness 8 but otherwise unknown process [u,A,X] from sequences v
from the observation process [Pv,E,V], where the noise process [v,B,Y] is a

well-known, high entropy process.

To accomplish the objective of proposition 1, we must perform certain opera-
tions on the observation sequence v. Such operations will be called smoothing
functions. Also, the observation sequence is usually finite, of say length n.

. , . R n
Then, the smoothing functions should operate on finite observation sequences v .
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The imposed finite sequence limitation, necessitates the most effective
utilization of the observation sequence v"'. Due to the stationarity and ergodi-
city of the observation process [pV,E,V], such most effective utilization of the
observed data can be obtained th?ough the introduction of a sequence {SZ} of
sliding block smoothing functions. 1In fact, if [vx,C,W] is the process induced
by some sequence x from the information carrying process and the noise process
{v,B,Y], the observed sequences w" are utilized effectively by a sequence of
smoothing functions as in (1), for £ < n.

We formalize the above discussion by a proposition.

Proposition 2

The objective of proposition 1 is most effectively accomplished through, in
general, a sequence {sﬁ} ; £ < n of sliding block smoothing functions on observed

n
sequences w .

It is well known [7,8] that each sliding block smoothing function Sps when
~ operating on sequances w' from the stationary and ergodic process [vx,C,W],
induces a staticnary and ergodic process. Therefore, time averages converge then
asymptotically to probability measures (in measure).

Each of the processes [vx szl, D, Z), induced by the process [VX,C,W] and
the sliding block smoothing function Sp» is designed to "approximate" the
information carrying process [u,A,X]. Therefore, each of the processes
[vx szl, D,Z]} should have entropy close to the entropy of the process [U,A,X].
But if the process [U,A,X] is smooth with degree of smoothness B, its entropy is
bounded from above by the finite number B. Thus, the entropy of [vx szl,D,Z]
should be within these limits. On the other hand, the entropy of the process

[vx,C,W] is high compared to 8. It is then well known [7] that to achieve the




desirable entropy reduction we must include quantization (analog-to-digital

conversion) within the operation of the sliding block smoothing function Spe

Therefore,

Lerma 1

The objective of proposition 1 is most effectively accomplished through, in
general, a sequence {sz} ; £ < n of sliding block smoothing functions on observed

n . : -
sequences w , where each such function sp is an analog-to-digital converter.

We would like to point out herc that the analog-to-digital or quantization
operation is equivalent to the operation of a lbw pass filter, which eliminates
bandwidth resulting from the noise only.

Lemma 1 implies that the class of the appropriate parametric sliding block
smoothing functions is a class of non-linear functions, which convert analog data
to digital data.

More specifically, we propose a sequence {SK} such that each sp operates on
the premise of estimating £-dimensional probability masses from the process
[vx,C,W]. We propose that then thege estimates be used for the extraction of the
unknown seguence x.

To illustrate quantitatively our proposal let us first assume that the
process [U,A,X] is oversmooth (definition 2). Then, the information carrying
process reduces to an unknown constant C. This constant is also a location para-
meter if the additive superposition relationship between the processes [u,A,X]
and [v,B,Y] is true. 1In this case, we propose a sequence {SZ} of sliding block
smoothing functions, which is reduced to one element sp Specifically let sl(-)

operate on the observation sequence w" in the following way:

0;wj>0

l;w, <0
3 =

5 w,) = 4)

N




10 |

Then, due to the stationarity and ergodicity of the process [Vx,B,Y], the

n

average n—l E sl(wj) estimates the probability mass of negative values for the
5=1

. s s 1 . .
one-dimensional restriction vx from the measure vx. This estimate converges

asymptotically to the true probability mass, in measure vi. If the noise process

{v,B,Y] is zero mean, and if F 1 indicates the cumulative distribution implied by
\Y]
its one-dimensional restriction Vl, then the constant C is estimated as follows:

n

A, n, -1 [ -1
Cw) = - F\)1 (n Z sl(Wj)> (5)

j=1

i e e me m eha e G

1
]

Let us cbserve that due to the invertible nature of the function F l(x), the entropyj
4

Y
n

of the variable 'E(wn) is equal to the entropy of the variable a1 Z sl(wj), |
j=1
which converges for n = ® to zero.
When the information carrying process [i,A,X] is not oversmooth but simply
smooth with some possibly unknown degree of smoothness, we propose a sequence
{Si} 3 £ < n of sliding block smoothing functions. We propose, more specifically,
that the sl(o) such function operate as in (4) and (5) for the estimation of the
digit Xy from the sequence %", Furthermore, we propose that ﬁhe sz(-) smoothing
function be used to estimate the two-dimensional probability masses of vi
conditioned on the estimated by sl(-) digit Xy and subsequently be used to
estimate %, conditioned on the Xy estimated value. 1In general, we propose a
recursive use of the functions Sps in such a way that SZ(') is used to estimate
£ ("z

the conditional measure v xe_l

1 ) , and subsequently the digit Xp conditioned

. £-1
on the previously estimated vector Xp -
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This subsection was dedicated to some explanatory statements regarding the
general approach we adopt in this paper. Our approach is further formalized in
the following subsection.

b. Rigorous Abstract Formalization

Based on the preceding discussions, we consider ourselves ready at this
point, to formalize a general theory on parametric data smoothers.

Let [v,B,Y] be a well-known infinite alphabet, stationary and ergodic, high
entropy stochastic noise process.

Let [LV,E,V] be an infinite alphabet, stationary and ergodic, high entropy
observation process, induced by a well-known sdperposition relationship between
the well known process [V,B,Y] and some unknown low entropy stationary and
ergodic information caerrying process [u,A,X].

Let {ﬁe} be a sequence of sliding block functions, operating on sequences
v from the [pV,E,V] process. Each sliding block function Sl(.) produces a

discrete-time sequence z with elements Zj through the following operation:

= j+m .

As in section 2, the function in (6) is time invariant, it operates on
£-length blocks of elements from the sequence v, and it can be of either deter-
ministic or stochastic nature. If it is of stochastic nature, s L will

L,v

indicate the measure induced by Sp and a given sector v from the sequence
v. We will denote by uv sz the measure induced by the process [Uv,E,V} and
the function Sps for different vz sequences. We will denote by D the induced

alphabet. Then, the process [uvszl,D,Z] is also stationary and ergodic.

We now proceed with the following definition:
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Definitjon 3
The sequence {SL} of sliding block functions is a sequence of parametric

data smoothers for the process [uVv,E,V], if each induced process [HVS-I,D,Z] is

an estimate of the information carrying process [i,A,X].

Let it now be known that the unknown information carrying process [u,A,X]
is smooth with degree of smoothness 8 (definition 1). Then, the "estimate-
processes’ {uvszl,D,Z] should be also smooth with degree of smoothers B.

We can now proceed Qith the following theorem:

Theorem 1

Given that the information carrying process [H,A,X] is smooth with degree of

smoothness 2, and that the observation process [uv,E,V] is a high entropy process
with entropy much higher than B, the sequence {Sﬂ} of parametric data smoothers
for the process [uv,Z,V] is a sequence of sliding block analog-to-digital con-

verters (or quantizers).

The proof of the theorem is straight-forward from the definition of parametric
data smoothness for the process [uv,E,V] (definition 3), and the fact that entropy
reduction (from the entropy of the observation process to the entropy of the
information carrying process) can be obtained only through quantization.

We will conclude this section by pointing out emphatically that definition 3
and theorem 1 indicate clearly the appropriate performance criterion in the design
and evaluation of parametric data smoothers. In particular, this criterion is

entropy matching between the processes induced by the smoothers and the entropy

of the unknown information carrying process. The choice of this criterion is
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clearly dictated by the very nature of the problem. Furthermore, the entropy

perfornance criterion also dictates the result in theorem 1.

4. Robust Data Smoothers

a. Definition

Our analysis in this section is based of course on the theoretical formaliza-
tion for parametric data smoothers in section 3, and it is parallel to the analysis
in {7,8].

We will first explain the statistical model applicable to robust data H
smoothers.

As with the parametric data smoothing proBlem, the information carrying

process [u,4,%] is unknown. What is known, however, about this process, is that
it is ergodic and stationary and that it is smooth with degree of smoothness B.

The basic difference between the model of section 3 and the present model,
lies on the knowledge about the noise process [v,B,Y]. Indeed, here we assume
that the noise process may be statistically contaminated. That is, it may be
any member from a family M of stationary and ergodic processes. As in [7] we will
assume that the exact membership of the family M is not known, and we will focus
on families of data smoothers which guarantee local performance stability around
a nominal well known noise process [vo,B,Y].

As emphasized in section 3, the performance criterion for the design and
evaluation of parametric data smoothers should be the output entropy induced.

Therefore, when the noise process is ill-defined, the local performance stability

sought should be stability in the output entropy induced, when statistical

deviations from the nominal noise process are present.
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1,2,

Let us denote by H(pv szl) the entropy of the output process [HvV sz
which is induced by the information carrying process [i,A,X], the noise process
[v,B,Y] and the sliding block quantizer sz(-).

As in [6,7,8), we will use the p distance as a measure of closeness between

twvo stationary processes. As explained in [6], the B distance is the appropriate

distance in this case, as opposed to the Prohorov distance. However, as in

[6,7,8] our analysis will use the construction of sequences which imply Prohorov
closeness between finite-dimension restrictions from the stationary measures. We
emphasize this point here, to eliminate some objections as to the demanding pro-
perties of the p distance.

We now proceed with a definition for robust data smooﬁhers.

Definition 4

Given 2 staticnary and ergodic as well as smooth information carrying process
[u,A,X], given a high entropy stationary and ergodic noise process vo and a

family M of stationary and ergodic processes that contains Vo’ the sequence {SL}

of sliding block analog-to-digital converters is robust at v in M iff:

Given € > 0, there is some § > 0 such that for all £ and all processes veM:

B(vo,v) <8~ IH(uvosil) - H(UVSZI)I <e€

We notice from definition 4 that our statistical contamination is included
in the noise process only. That is, we focus on adjusting a sequence {sl} of

parametric data smoothers designed for some fixed (but unknown) information

carrying process and some well-known fixed noise process, in a way that entropy
stability is guaranteed if the information carrying process remains the same but

variations in the assumed noise process may exist. However, due to the lack of
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precise statistical description on the information carrying process, our assumed
statistical contamination can be at least partially carried over to this process.
Our formalization is general enough to incorporate this generalization.

Now, as explained in [7,8), since the processes [uvs-l,D,Z] are finite
alphabet processes (due to the fact that SL(') is an analog-to-digital converter),
we can concentrate on {SZ} sequences which guarantee p closeness of the processes
uvosz _and UVSZ « Such closeness will then imply the entropy closeness required
by definition 4. To formalize this statement, we proceed with the following
lemmra:

Lemma 2

Given [u,A,X], v, M as in definition 4, and a sequence {SZ} of sliding
block analog~to-digital converters such that:

Given € > 0, there is some 6 > O such that for all £ and all processes

VeM:

Blv,W) < 8 >y s;', wvsph) <€

Then, the sequence {s,} is robust at v_ in M.
a o

In lemna 2, we notice that as in [7] we allow for possibly different
distortion measures d(.,.), p(.,.) on the 0~ algebras of the uvszl and Vv
processes respectively. That is, d indicates rho bar distance defined through
the distortion measure d(-»>-.).

As in [7,8], if the data smoothers in the sequence {SZ} are deterministic,

each output Z, in (6) assumes a unique value for every fixed value of the observed

3

sequence Vgt?+m+1' I1f, on the other hand, each sp is stochastic, each observed

induces a measure.

+m
sequence v;_£+m+1
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b. Sufficient Conditions for Robust Data Smoothers

Our sufficient conditions will be basically the same as in [7]. We will
present them here, referring to the proofs in [7], and then we will discuss some
of the implications behind the distance measures we use.

Let the superposition relationship between the information carrying process
[u,A,X] and the noise process [V,B,Y] be such that if [uv,E,V] is the induced

process, then,

B(vysv) <8 > By ,uv) <& 5 v, Ve M. (7)

Such superposition relationship is the additive.

Let £ be the o-algebra of sets from the alphabet E, and let Y be the metric
on E, Llet D be the G-algebra of sets ffom the alphabet D, and let £ be the metric
on P. Then, we will model each sliding block smoothing function Sps as a
stationary, zero memory, (in general stochastic) channel [E ’SZ’D] mapping sets

from EL onto sets of D, such that for some fixed integer m satisfying mtl 5.2:

n-1
sz, n-1+m (22_1€DoxDlx...an_1) = I I sz.vj+m (ZjED.) s ¥n, VDjE (/]
~LAmtl Jeo  d-bamil J

3 1 =04ce0.,n-1 (8)

Each sz 2 represents, in general, a measure for every given sequence v .
sV
This measure is nontrivial if the mapping induced by Sp is stochastic. s1 2
L,v

designates, in general, a conditional measure representing the transition proba-
bility of the channel in (8), conditioned on the sequence vz.

Let s1 2 s1 2 be two conditional such measures conditioned on two different
v

L, L,w

sequences vz, wz respectively.

P

uhla. p i 1ot ok, S " P oy
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Let I (s1 . 1 ) denote the Prohorov distance between the measures
d,1 L, 4 £
v Z W
s1 25 g where the distortion measure d(.,.) is implied in the distance.
L,v L,w

Let nd,k indicate the k-dimensional Prohorov distance, where the distortion
measure d(-,-) is used.

Let B be the O-algebra of sets from the alphabet B, and let the same metric
Y as with the algebra E be the metric on B.

Let u 2 be the empirical measure constructed from the sequence xz, as given
by (2) in section 2, and let ukz be its k-dimensional restrictions.

X
Then, as in [7], we can present the following definition:

Definition 5
i, The sequence {SZ} of stochastic (in general) sliding block channels

is continuous, if given vzs EL, e>0, there exists § = §(L, VL,E)>0

such that:

£ £ . 1 1
YL(V sW ) < § implies Hg,l (s g2 S £) < g.

L,v L,w

, ii. The sequence {s,} of stochastic (in general) sliding block channels
2

F is continuous at the measuregyo, if given € > 0, n > there exist:
integers k, 2 , some 8 > o, and for each £ > Z some set ALEBL with

(A ) > 1-n, such that: for each xzeA s ¥ e:B‘E with the property:

k k
HY,k (u e H z) <6
X y

it is implied that:

. 1 1
I (s s S ) <€
&1 Z,xl Lyt
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The above definition is the same with definition 4 in reference [7]. Using
the statements in this definition, we can now express the following theorem:

Theorem 2

Let Uy be a fixed stationary and ergodic smooth information carrying process.
Let Vo be a given stationary and ergodic, high entropy, analog noise process. Let
M be a given family of stationary and ergodic, high entropy, analog processes,
that contains V,+ Let a sequence {sa} of sliding block analog-to-digital converters
be given. Let also the distortion measure p(+»+) be used for the processes VveM, uv,
where uv the process induced by the superposition of U arnd v. Let Y be the common
metric on the O-algebras of both v and uV, and let the u and v superposition be

such that:

PV 5V) < & > p(uv V) < 8 5 v ,veM 9)

Let the distortion measure d(->.) be used on the processes U\)sz . Let

p(+»-), d(-»+) be such that: Given € > 0, there exist 61 > 0, 62 > 0 such that:

p(X,Y) < 61 > y(X,Y) < ¢
E(X,Y) < 62 + d(X,Y) < ¢

; where v, £ as in definition 5.
Then:

i. If {SL} is a sequence of stochastic sliding block channels that is continuous,
then {SK} is also robust at v_ in M (Def. 4) for finite length £ sliding
block windows. K

ii. 1If {sz} is a sequence of stochastic sliding block channels that is continuous

at the measure vo’ then {SL} is also robust at vo in M (Def. 4) for unbounded

lengths £ of sliding block windows.
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Due to the assumed property (9) in the theorem, the proof of it (including
measurability of the sequence {SE})’ is exactly the same with the lengthy proof
of theorem 2 in [7]. In fact, the statement in lemma 2 is proved there. This
statement results in the property of robustness as expressed by definition 4.

Again, the sufficient conditions which guarantee the satisfaction of robust-
ness, are such that they do not allow for deterministic sequences {SZ} of sliding
block analog-to-digital converting data smoothers. The conditions, imply again
(as in [7,8)) that for the satisfaction of robustness, the sequence {SZ} has to
be a sequence of stochastic smoothers-converters.

There are a few points resulting from the presented analysis, which we feel
that must be particularly emphasized. Thus, we include them in a separate section.

5. Important Observations

1. The analysis we have presented leads to the following general conclusion:

Data smoothers oi high and robust performance, are a sequence of

sliding block stationary stochastic analog-to-digital converters.

A sequence of sliding block data smoothers utilizes the available data
sequences more efficiently. The analog-to-digital operation is needed for
smoothing, or entropy compression. The stochastic nature of the smoothers
guarantees performance stability in the presense of statistical contaminationms.

If the observation sequences, on which the smoothers operate, are of finite
length (as it is usually the case), only continuity (Def. 5.i) of the smoothers,
as real functions on the data, is needed for robustness.

2. It has been felt by some researchers in the area of robustness that the p
distance is too strong a measure as a contamination criterion on the space of the
data processes. As emphasized in [6], the p distance is the only appropriate

existing such measure for spaces of general stationary processes with memory.
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The Prohorov distance does not provide then an appropriate upper bound on the
distance between different finite restrictions of the processes. However, given
two stationary processes Hos M, if it is desired that their closeness be measured
by the Prohorov distance Hk(uz, uk) between their k-dimensional restrictions us
and uk, the conditions in definition 5 and theorem 2, as well as the results in
[6,7,8] hold as they are. The reason for that is, that in the proof of theorem 2
(found in [7]) only the Prohorov distance Hk(ug, uk) is used as a measure of
closeness between the processes uo and .
3. There is an important side-result evolving from the presented theory, which
we want to emphasize through a theorem. The result is asymptotic and it refers
to stationary sliding block channels [E’SK’ D] with sliding block window of
asymptotically large length.

Let us denote by s(uv) the limit stationary and ergodic process induced by
the process [V and the sliding block stationary stochastic channel Sp» for
£ + o, Llet us denote by sn(uv) n-dimensional restrictions of this process.
Then, we can express the following theorem:

Theorem 3

Condition ii in definition 5 is sufficient and necessary for the satisfaction
of the following property:

Given € > 0, there exists 6 > 0 such that:

Blugav) < 6+ T, | (sl(u\)o), sTuw) < € ; ¥ veM.

Theorem 3 expresses a strong and important property. The property says that
continuity at the measure vo (definition 4.ii) is also necessary (in addition to
being sufficient for asymptotic entropy stability), if Prohorov closeness of the

first-order restrictions of the processes induced by the sequence {sl} in the
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limit (£ » «) is demanded. We call this property cdnsistency stability. i
The proof of theorem 3 can be found in the appendix. The same proof holds
for the second part of theorem 2, in reference [8].

6. The Reconstruction of Continuous - Time Waveforms

As stated by Huber [2], one of the important, possibly subsequent operations
of the data smoothers, is the reconstruction of continuous-time waveforms f(t)

from a discrete-time sequence x generated by the information carrying process

[u,A,X].

In this section, we will show that such recomstruction is asymptotically
possible only if the analog-to-digital convertgrs s, are stochastic. This result
presents an additional argument in favor of stochastic analog-~to-digital sliding-
block data smoothers, which also satisfy the conditions of definition 5.

Let x be a discrete-time sequence generated by the information carrying
process [J,A,X]. Let [vx,C,W] be the process induced by the sequence x and the
noise process [v,B,Y]. Let {SK} be a sequence of sliding-block analog converters

operating on the seguence w.

Let £(t) ; - < t < = be the continuous-time waveform whose sampled version
is the sequence x. Let these samples be in distance u from each other, so that

the kth element from the sequence x is given by X, = f(%p. Let g(xk) be the

*
quantized version of the element X, » as induced by the sequence {sz}.
Let {un} be a sequence monotonically decreasing to zero (for n increasing),

and let {hk(un,t)} be a sequence of kernel functions satisfying the properties

in [9], where the sequence is generated by varying k.
Define
o]
£, (t) = E X hk(un,t) (9
n k:.oo

Then, it is well-known that £ (t) = f(t).
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Define

(o]

g, (t) = :E: g(xk) hk(un,t) (10)

n k:.co

Then, we can express the following lemma:

Lemma 3

If £(t) is a bounded, uniformly continuous function on (—=,©) and g(xk) is
a deterministic analog-to-digital mapping, then the function g, (t) does not
converge to f(t) for n *> =, i

Proof

Suppose that g, (t) converged to f£(t) for some t. Then, given € > O,

n
there exists no such that:

fu (t) - g, ()| <€ ; ¥n> n . (11)
n n

Let

y = {o-o, y-l’ yo, yl, ooo}

3 where Y = g(xk).
Let ux, uy be the empirical measures from the sequences x and y respectively,
as in (2). Then, due to theorem 3, property (11) can be satisfied if and only

if some § > 0 can be found such that:

1l 1l . . .
(ux, uy) < § implies fu (t) - 8, ()] <€ ; ¥n> n_ (12)

n n r

[+ o0
for all x sequences within some compact space of A which covers most of A .

Ty

Such a compact space clearly exists for bounded f(t) functions.
But if g(xk) is deterministic, it is also discontinuous. Therefore,

property (12) can not be satisfied. '
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Let now the mapping g(xk) be stochastic. Specifically, let g(xk) be any
measure continuous in Xy That 1is, given € > 0 and Xy there exists some
§ = 8(e, xk) > 0 such that
I, -z} <8~ T (8(x), g(2)) <e.

Such a g(-) generates a sequence of measures g, (t), for every fixed t and

n
varying n.
Define
(o]
G, () = E E{fg(x )} - h (u ,t) (13)
n k:..oo .
where E{g(xk)} the expected value of g(x).
Define
G(t) = Lim G, (t) (14)

e n
and let G(t) exist.
Then, G(t) is uniquely determined through the choise of the g(xk) measures.
Let the measures g(xk) be such that the function G(t) in (14) is a one-to-
one, continuous, and monotone function of f£(t). fhat is, f(t) = G_l(f(t)), and

given € > 0, there exists some § > 0, such that:

|c(cl) - c(cz)l <8~ |£(r)) - £(e))] < e

Then, we can express the following theorem.

Theorem 4

Let the analog-to-digital mapping g(xk) be stochastic, continuous as a
function of xk, and such that it induces a function G(t) which is a one-to-one,

continuous, and monotone function of £(t). Then, the function

(e de timane s

2 ez amLia
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g, (©) = Z g(x) h (u_,t)

k=-—00

converges for n + ® to G(t) almost everywhere for all t. Therefore, G-l(f(t))

converges then to f(t) a.e. for all t.

Proof
Let n,, n, be given. Define
- k____ = __—-k
xk-f(u ) :Yk f(un)
™ 2
x=1{..., X_1> X0 Xp» ees}

y= {"') y"l’ YO, yls ...}

Due to the nature of the kernel functions [as in 9}, and the boundness and
uniform continuity of £(t), we have:
[ <)
There exists some ng and some compact space A in A which covers most of

Am, such that condition ii in definition 5 is satisfied for all ny, n > n, and

2

x€A, ysAm. Specifically, given ny, N, > noo x€A and € > 0, there exists some

8 > 0 independent of x, such that:

1 1
<
HY,l (ux,uy) $
. . >
implies Hg,l(gu (t), 8, (t)) <€ ; ¥t ¥ n, ny, >0
n n
1 2
But since g, (t), g, (t) are bounded, we also have then:
n n
1 2

< . .
VE(gu (t), 8, (t)) <e ; ¥t ; ¥ n;, 0, > n
o | )

; where VE(-,-) denotes the Vasgershtein distance defined through the metric &.

But Vasershtein closeness implies convergence to the mean of G(t) a.e. for

all t.
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The proof is now complete.

Lemma 3 and theorem 4 prove that the design of stochastic analog-to-digital
smoothing functions is necessary and sufficient for the asymptotic reconstruction

of the £(t) waveform from its discrete-time version x.
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Appendix

Proof of theorem 3

First we will prove the sufficient of the condition in definition 5.1i.
Then, we will prove the necessary.
1. Let the condition in definition 5.ii. be true.
In this case, we only have to prove the existence of sl(uv) for each
VeM; fhat is consistency for some sl(uv).

Then, since for all £ > Lo’ given € > 0, there is 6 > 0 such that:

PV ,V) < 8+ d(uv ,uv) < € ;5. v ,veM

if the condition in definition 5.ii, holds, then clearly:

B < 8 > Ty st vy), st <

also, since the d distance bounds from above the Prohorov distance Hd,k,
for all k.

To prove consistency at some VeM, we only have to prove that for any
§ > 0 and for some sl(uv), we have:

£im wv(x: I
ovo d,1

1 1
(s 2 S (uv)) >6) =0
£,x
But this results exactly the same way and by the same construction

of sets as in the proof of lemma 5.2. in {6], in conjuction with the

fact that the condition in definition 5.ii. implies:

k k
ny,k (uxz, uy ) <6

Kk
HY;k (o uvk) <3
y
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Assume that the following property is true:

Given € > 0, there exists 6§ > 0, such that:

Bu,W) < 8> T 1 (sT(uv), 8 W) < € 3 ¥ v vl (a.1)

The implicit assumption behind the above property is existence of
consistency. In particular, it is implied that the sequence {sl} is
consistent at all measures V in a neighborhood of Vor within M.

But B(VO,v) < § implies

Hp,k (vﬁ, vk)_< § ; ¥k

Now, suppose that the condition in definition 5.ii. does not hold.

Then, there is no k and no Zo such that

k  k 1 -1 1 -1
Hp’k(vo,v ) <8 > Hd,l(uvost » WV's, Y <e; ¥&L> Lo

so (A.1l) can not be true.

Therefore the nonholding of the condition in definition 5.ii. presents

a contradiction. Thus, necessity holds.




-28-

References:

(1}
[2]

(3]

(4]

[5}

(6]

(7]

(8]

[9]

J. W. Tukey (1977), Exploratory Data Analysis, Addison-Wesley, Reading, Mass.

P. Huber (1979), "Robust Smoothing" in Robustness and Statistics, edited by
R. L. Launer and G. Wilkinson, Academic Press.

C. L. Mallows (1979), "Some Theory of Nonlinear Smoothers," to appear in
the Annals of Statistics.

C. L. Mallows (1979), "Resistant Smoothing" to appear in Proc. Heidelberg
Workshop on Smoothing Tech. for Curve Est. (T. Gasser and M. Rosenblatt,
editors).

R. D. Martin (1979), “Approximate Conditional-Mean Type Smoothers and Inter-
polators," Invited talk, to appear in Proc. Heidelberg Workshop on Smoothing
Tech. for Curve Est. (T. Gasser and M. Rosenblatt, editors).

P. Papantoni-Kazakos and R. M. Gray (1979), "Robustness of Estimation on
Stationary Observations", Annals of Probability, Vol. 7, No. 6, December,
rp. 989-1002.

P. Papantoni-Kazakos (1979), "Sliding Block Encoders that are Rho-Bar
Continuous Functions of their Input," Tech. Rep. TR-79-11, Dept. of
Electrical Engineering and Computer Science, The University of Connecticut,
Storrs, CT., August, and to appear in the IEEE Trans. Inf. Th., May 1981.

P. Papantoni-Kazakos (1980), "Stochastic Quantization for Performance
Stability,”" Tech. Rep. TR~80-6, Dept. of Electrical Engineering and Computer
Science, The University of Connecticut, Storrs, CT., March, and to be
presented at the 1981 International Symposium on Information Theory.

E. Masry and S. Cambanis, "Consistent Estimation of Continuous-Time Signals
from Quantized Noisy Samples," 1979 Annual Conference on Information Sciences
and Systems, Johns Hopkins Univ.







